Name \qquad

Date \qquad

1. In $\square \mathrm{ABCD}, \mathrm{m} \angle 1=\mathrm{m} \angle 2, \mathrm{CF}=15 \mathrm{~cm}, \mathrm{AB}=$ 10 cm , and $\mathrm{m} \angle \mathrm{C}=105^{\circ}$. Find the perimeter of \square ABCD.	2. Given: Parallelogram ABCD with $\overline{C D}$ extended to E Prove: $\overline{A B} \times \overline{E F} \cong \overline{B F} \times \overline{D E}$
3. $\overline{B P}$ and $\overline{C P}$ are angle bisectors. If $\mathrm{m} \angle \mathrm{A}$ $=72^{\circ}$, find the measure of $\angle \mathrm{BPC}$.	4. In $\triangle A B C$, the measure of angle B is twice the measure of angle A. Angle C measures three times the measure of angle A. If AC $=22$, find $A B$. (A) 11 (B) $22 \sqrt{3}$ (C) 22 (D) $11 \sqrt{2}$ (E) $11 \sqrt{3}$

Name

Date \qquad
5. The diagonals of a are
perpendicular bisectors of each other.
(A) trapezoid
6. In right $\triangle A B C, \overline{C D}$ is the altitude to hypotenuse $\overline{A B}$. If $A C=26$ and $A D=13$,
(B) rectangle
find $A B$.
(C) rhombus
(D) parallelogram
(A) $2 \sqrt{13}$
(B) $13 \sqrt{2}$
(C) 22
(D) 52
(E) 39
7. The measure of inscribed $\angle A B C=69^{\circ}$.

Find $\mathrm{m} \overparen{A C}$.
9. If the length of the hypotenuse of the right isosceles triangle is 8 , find the length of the longer leg of the adjacent triangle.

8. How many degrees are in each angle of an equilateral triangle?
10. In $\square \mathrm{ABCD}, \angle \mathrm{B}: \angle \mathrm{C}=1: 3$. Find the measure of $\angle A$.

Name \qquad

Date \qquad
11. The governor wants to build a new
library for three cities X, Y, and Z. If the distance between each two cities is 18 kilometers, and the location of the new library will be in equidistance to all three cities, what is the distance between the new library and city X ?
12.

```
Given: \(\overline{B E}\) bisects \(\angle \mathrm{ABC}\).
Prove: \(\angle \mathrm{ACD}>\angle \mathrm{ABE}\)
```

11. The governor wants to build a new library for three cities X, Y, and Z. If the distance between each two cities is 18 kilometers, and the location of the new library will be in equidistance to all three cities, what is the distance between the new library and city X ?	12. Given: $\overline{B E}$ bisects $\angle A B C$. Prove: $\angle A C D>\angle A B E$
13. State whether the polygon is best described as equiangular, equilateral, regular, or none of these.	14. Given: $\angle^{1} \cong \angle 2, \overline{B D} \cong \overline{C E}, \overline{A B} \perp \overline{B E}$, $\overline{E F} \perp \overline{B E}$ Prove: $\angle^{\mathrm{A}} \cong \angle \mathrm{F}$
15. Points X and Y are on $\overline{A B}$. If $\mathrm{AX}>\mathrm{BY}$, then which statement must be true? (A) $\mathrm{XY}<\mathrm{BY}$ (B) $A Y<B Y$ C) $\mathrm{AY}+\mathrm{BX}>\mathrm{AB}$ (D) $A X<B X$ (E) $A Y>B X$	16. Suppose that the vertex, 0 , of $\angle A O B$ is placed on the center point of a halfcircle with coordinates from 0° to 180°. Let a and b be the coordinates where $\overrightarrow{O A}$ and $\overrightarrow{O B}$ intersect the half circle. What is the measure of $\angle A O B$? (A) a - b (B) $\|b-a\|$ (C) $a+b$ (D) ab

Name

Date \qquad

| 17. Transversal t cuts lines k and $\mathrm{n} . \mathrm{m} \angle 1=$ $(148-3 x)^{\circ}$ and $m \angle 2=(5 x+12)^{\circ}$. Find the value of x that makes $k \\| n$. | 18.
 Given: $\overline{A B} \cong \overline{D C}, \overline{A B} \perp \overline{A D}, \overline{D C} \perp \overline{B C}$
 Prove: $\overline{A D} \cong \overline{B C}$ | | |
|---|---|---|---|---|
| 19. At 5 o'clock the hands of a clock form an angle of \qquad . | 20. The length of the hypotenuse of a right isosceles triangle is $4 \sqrt{5}$. What is the perimeter of the triangle? |
| 21. Three lines intersecting in one point are \qquad coplanar.
 (A) sometimes
 (B) never
 (C) always | 22. $\overline{A B}_{\\|} \overline{H I}_{\\|} \overline{D F}^{\prime}, \overline{A D}_{\\|} \overline{F H}, \overline{B I}_{\perp} \overline{H I}$, and m $\angle \mathrm{H}=21^{\circ}$. Find $\mathrm{m} \angle \mathrm{BCA}$. |

Name
\qquad Date \qquad

1. Which of the following equations are proportions?
(A) $43 / 75$? 68/100
(B) 8/6 ? 28/21
(-) $4 / 15$? 6/21.5
(D) $1 / 6$? $18 / 3$
2. If $\mathrm{k} \|^{\mathrm{n}}, \mathrm{m} \angle 1=(3 \mathrm{x}-11)^{\circ}, \mathrm{m} \angle^{2}=3 \mathrm{x}^{\circ}$, and $m \angle 3=(x+44)^{\circ}$, find the value of x.

3. In the figure, A, B, C, D, E, and F are points on a circle, $\mathrm{m} \angle \mathrm{H}=16^{\circ}$, and $\mathrm{m} \angle \mathrm{I}$ $=23^{\circ}$. Find $\mathrm{m} \angle \mathrm{BGC}-\mathrm{m} \angle \mathrm{EJF}$.
4. In $\triangle \mathrm{ABC}, \overline{A D} \perp \overline{B C}$ and $\overline{A E}$ bisects \angle BAD, $\mathrm{m} \angle \mathrm{B}=62^{\circ}$, and $\mathrm{m} \angle \mathrm{C}=36^{\circ}$. Find $\mathrm{m} \angle$ DAB.

5. $m \angle 1=\left(x^{2}\right)^{\circ}$ and $m \angle 2=(2 x-15)^{\circ}$. Find 6 the value of x that makes lines k and n parallel.

Given: $\overline{B D} \cong \overline{C E}, \overline{A D} \cong \overline{A E}$
Prove: $\angle \mathrm{BCD} \cong \angle \mathrm{CBE}$

Name

Date \qquad
(Key 2 - Answer ID \# 0903204)

7. ${ }^{k}\left\\|^{1}\right\\|^{\mathrm{n}}$ and $\overline{A B} \\|^{C D}$. If $\mathrm{m} \angle 1=75^{\circ}, \mathrm{m} \angle^{2}$ $=63^{\circ}$, and $\mathrm{m} \angle 3=38^{\circ}$, then $\mathrm{m} \angle \mathrm{x}+\mathrm{m} \angle \mathrm{y}+$ $\mathrm{m} \angle \mathrm{z}=$ \qquad	8. Given: $\mathrm{m} \angle \mathrm{ABD}=(2 \mathrm{x}+9 \mathrm{y}+78)^{\circ}, \mathrm{m} \angle \mathrm{CBD}=$ $(4 x+y+52)^{\circ}, m \angle A D B=(x+8 y+58)^{\circ}$ and $m \angle C D B=(2 x+4 y+63)^{\circ}$. What values must x and y have to make the quadrilateral a parallelogram?
9. In right $\triangle A B C$, altitude $\overline{C D}$ is drawn to the hypotenuse. If $A D=8, B D=18$, and $C D=x+9$, find the length of the altitude.	10. E is the midpoint of $\overline{D F}$. If $\mathrm{DE}=3 \mathrm{x}+$ 33 and $\mathrm{EF}=7 \mathrm{x}+13$, then $\mathrm{DF}=$ \qquad .
11. Given: $\overline{B D}$ bisects $\angle A D C . \overline{A C}$ bisects $\angle \mathrm{BCD} . \angle \mathrm{ADC} \cong \angle \mathrm{BCD}$ Prove: $\overline{A D} \cong \overline{B C}$	12. Given: $\overline{A G}\\|\overline{B E}, \overline{C G}\\|_{\overline{D E}}, \overline{A B} \cong \overline{C D}$ Prove: $\angle \mathrm{G} \cong \angle \mathrm{E}$

Date \qquad
(Key 2 - Answer ID \# 0903204)

13. In rectangle $\mathrm{ABCD}, \mathrm{AB}=(2 \mathrm{x}+5 \mathrm{y}-117)$, $B C=(4 x+2 y-102), C D=(3 x-7 y+78)$, and $D A=(7 x+2 y-165)$. Find the perimeter of the rectangle.	14. In $\triangle A B C, \overline{A B} \cong \overline{A C}, \mathrm{~m} \angle A=(\mathrm{x}+74)^{\circ}$ and m $\angle B=(x+47)^{\circ}$. Find all three angles.
15. If $\overline{A B} \cong \overline{A C}$ and $\overline{A D} \cong \overline{A E}$, how many pairs of congruent triangles are there in the figure? (A) 6 (B) 5 (C) 4 (D) 3	16. If $\mathrm{m} \angle 1=51^{\circ}, \mathrm{m} \angle 2=69^{\circ}$, and $\mathrm{m} \angle 3=42$ ${ }^{\circ}$, then $\mathrm{m} \angle \mathrm{x}+\mathrm{m} \angle \mathrm{y}-\mathrm{m} \angle \mathrm{z}=$
17. In right $\triangle A B C, \overline{C D}$ is the altitude to hypotenuse $\overline{A B}$. Which line segment is NOT a hypotenuse? (A) $\overline{C D}$ (B) $\overline{B C}$ (C) $\overline{A B}$ (D) $\overline{A C}$	18. In right triangle ABC, the length of leg $B C$ is $6 \sqrt{3}$. If the area of the triangle is $54 \sqrt{\mathbf{3}}$, find the measure of $\angle A$. (A) 30° (B) 45° (C) 60° (D) 90°

Name

Date \qquad
(Key 2 - Answer ID \# 0903204)

19. $A B C D$ is a rectangle with diagonals intersecting at E. Given that $A B=12$ and $B C=5$, find the length of $\overline{D E}$.	20. In $\square \mathrm{ABCD}$, diagonals $\overline{A C}$ and $\overline{B D}$ intersect at E . If $\mathrm{m} \angle \mathrm{ACB}=(2 \mathrm{x}+1)^{\circ}, \mathrm{m} \angle$ $A D B=(4 x+6)^{\circ}, m \angle A E D=107^{\circ}$, find the value of x.		
21. What happens if the triangles share a side, part of a side, or part of an angle?	22. State whether or not each of the following triangle pairs is congruent. If so, state a reason.		
23. State whether the figure is a polygon. If it is, identify the polygon and state whether it is convex or concave. If it is not, explain why.	24. Given: $\overline{A B}_{\\|} \overline{C D}, \overline{B E}_{\\|} \overline{D F}$ Prove: $\overline{B E} \times \overline{C F} \cong \overline{D F} \times \overline{A E}$		

Name \qquad

Date \qquad
(Key 3 - Answer ID \# 0496849)

1. Michael had a geometry quiz today. He answered all questions correctly except for one:
In $\triangle A B C, \overline{A B} \cong \overline{A C}, \mathrm{P}$ is a point inside the triangle, and $\overline{A M}$ bisects $\angle \mathrm{A}$ and meets $\overline{P C}$ at M. Prove $\overline{P C}>\overline{P B}$. Michael showed you his steps for his proof. Please tell Michael which step was wrong?

(A) $\because \angle \mathrm{BAM} \cong \angle \mathrm{CAM}, \overline{A M} \cong \overline{A M}$
$\therefore \triangle \triangle \mathrm{AMB} \cong \triangle A M C$ by SAS
($\therefore \overline{M B} \cong \overline{M C}$
(D) In ${ }_{\triangle} \mathrm{BPM}, \because \overline{P M} \perp \overline{P B}$
(E) $\therefore \overline{P M}+\overline{M C}>\overline{B P}, \overline{P C}>\overline{P B}$
2. In $\triangle \mathrm{XYZ}, \overline{Y X}$ is extended through X to W and $\overline{X Z} \cong \overline{X Y} \cdot \mathrm{~m} \angle \mathrm{WXZ}=(4 \mathrm{x}-18)^{\circ}$ and $\mathrm{m} \angle$ $Y=(x+5)^{\circ}$. Find x.
3. Which of the following equations is NOT
equivalent to $\bar{b}=-\frac{d}{d}=$
(ㅂ)
$\frac{x+y}{z-y}=\frac{z}{x-y}$
(-B)

$$
\begin{aligned}
& b d \\
& a<-=\frac{x+y}{z}
\end{aligned}
$$

(C)

$$
\frac{2 y}{x+z}=\frac{p}{q}=\frac{x}{2}
$$

(D)
(E)
$\frac{d}{b}=\frac{c}{a}=\frac{a^{2}}{b^{2}}=\left(\frac{c}{d}\right)^{2}$
4. \odot_{p} and Θ_{Q} are congruent circles that intersect at C and D. What kind of quadrilateral must $P C Q D$ be?
(A) a square
(B) a rhombus
(E) a trapezoid
(D) a parallelogram

Name

Date \qquad (Key 3 - Answer ID \# 0496849)

5. Given: $\overline{A B} \cong \overline{A E}, \overline{B C} \cong \overline{E C}$ Prove: $\angle 1^{1} \cong \angle 2$	6. Given: $\angle \mathrm{B}>\angle \mathrm{C}$ Prove: $\widehat{A C B}>\widehat{A B C}$	
7. If $\overline{A B} \\| \overline{D E}, \mathrm{~m} \angle \mathrm{ABC}=2(\mathrm{~m} \angle \mathrm{CDE})$, and $\mathrm{m} \angle$ $B C D=30^{\circ}$, then $\mathrm{m} \angle \mathrm{CDE}=$ \qquad .	8. In $\square \mathrm{ABCD}, \mathrm{m} \angle 1=\mathrm{m} \angle 2, \mathrm{CF}=15 \mathrm{~cm}, \mathrm{AB}=$ 11 cm , and $\mathrm{m} \angle \mathrm{C}=95^{\circ}$. Find the perimeter of $\square \mathrm{ABCD}$.	

Name

Date \qquad
9. $\overline{A B} \|_{\| E} \bar{F}^{\overline{F H}}, \mathrm{~m} \angle \mathrm{~B}=70^{\circ}, \mathrm{m} \angle \mathrm{K}=21^{\circ}$, and $\overline{C J}$ bisects $\angle B G F$. Find $\mathrm{m} \angle \mathrm{E}$ and $\mathrm{m} \angle$ FGK.
10. Given: $\angle \mathrm{A} \cong \angle \mathrm{D}, \angle \mathrm{B} \cong \angle \mathrm{E}$, and $\overline{B F} \cong$ $\overline{C E}$. If $\triangle A B C$ can be proven congruent to \triangle DEF, state the congruency postulate involved.

11. Why doesn't CPCTC guarantee that triangles are equilateral and/or equiangular?
12. $A B C D$ is a rectangle with diagonals intersecting at E. Given that $A B=8$ and $B C=6$, find the length of $\overline{D E}$.
13. State whether the polygon is best described as equiangular, equilateral, regular, or none of these.

14. Which of the following statements is NOT true?

(A) If $\mathrm{sr}=8 \mathrm{t}$ and $\mathrm{k}=24$, then $s^{2}+t^{2}=568$.
(B) If $s=4$ and $r=10$, then $t=$ $2 \sqrt{10}$
(C) If $\mathrm{s}=4$ and $\mathrm{k}=15$, then $\mathrm{u}=$ $\sqrt{165}$
(D) If $s=4$ and $t=6$, then $k=$ 13.

Name \qquad

Date \qquad (Key 3-Answer ID \# 0496849)

15. Diameter $\overline{A B}$ is parallel to chord $\overline{P Q}$. If the measure of arc $B Q$ is twice of that of arc $P Q$, find the measure of angle ABP.	16. Given: $\overline{B C}_{\\|} \overline{D E}$ Prove: $\overline{A B} \times \overline{D E} \cong \overline{A D} \times \overline{B C}$
17. Plane X is parallel to plane Y. If plane Z intersects X in line k and Y in line n , then k is \qquad parallel to n. (A) always (B) never (C) sometimes	18. In circle 0 , secant $\overline{A B C}$ and chord $\overline{B D}$ intersect. If $\mathrm{m} \overparen{A D}=188^{\circ}$ and $\mathrm{m} \overparen{B D}=59$ ${ }^{\circ}$, find $\mathrm{m} \angle \mathrm{CBD}$.
19. Given: $\angle^{1} \cong \angle^{2}, \quad \angle^{3} \cong \angle 4, \overline{B D} \cong \overline{F G}$ Prove: $\angle \mathrm{C} \cong \angle \mathrm{E}$	20. Given: $\overline{A B} \cong \overline{A F}, \overline{A C} \cong \overline{A E}, \mathrm{D}$ is the midpoint of $\overline{C E}$. Prove: $\angle \mathrm{BDA} \cong \angle \mathrm{FDA}$

Name

Date \qquad
1.

Given: D is the midpoint of $\overline{C E} \cdot \overline{A C} \cong$ $\overline{A E}, \overline{A B} \cong \overline{A F}, \angle \mathrm{C} \cong \angle \mathrm{E}$
Prove: $\overline{B D} \cong \overline{F D}$

3. What is the relationship between a central angle and an angle inscribed in the same arc?
4. The governor wants to build a new library
for three cities X, Y, and Z. If the
distance between each two cities is 12
kilometers, and the location of the new
library will be in equidistance to all
three cities, what is the distance
between the new library and city X ?
6.

Given: $\overline{A T} \cong \overline{H S}, \overline{M T} \cong \overline{M H}$
Prove: a AMS is isosceles.

Name

Date \qquad
7. $\mathrm{m} \angle 1=135^{\circ}, \mathrm{m} \angle 2=63^{\circ}, \mathrm{m} \angle 3=77^{\circ}$. Is k 8. Suppose the ratio of the side lengths of $\| n$? If so, explain how. a regular hexagon $A B C D E F$ to the corresponding side lengths of another regular hexagon $A^{\prime} B^{\prime} C^{\prime} D^{\prime} E^{\prime} F^{\prime}$ are $\sqrt{3}: 1$. If the area of hexagon $A B C D E F$ is x and the area of hexagon A'B'C'D'E'F' is x^{\prime}, then $x: x^{\prime}=$ \qquad -
(A) $\sqrt{3}: 1$
(B) $3: 1$
(C) $\sqrt{2}: 1$
(D) $2: 1$
9. ABCD is a rhombus. If $\mathrm{AB}=(8 \mathrm{x}-104), \mathrm{CD}=$ (10x - 130), find the value of x.
10. Why does an equilateral triangle have to be equiangular?
11. Does CPCTC prove triangles congruent? Why or why not?
12. Tangent $\overline{A B}$ and chord $\overline{B C}$ are drawn to
circle O. The measure of major $\overparen{B C}$ is $(6 x+167)^{\circ}$ and the measure of minor $\overparen{B C}$ is $(4 x-87)^{\circ}$. Find $m \angle A B C$.

Name \qquad

Date \qquad
(Key 4 - Answer ID \# 0756486)

Name

Date \qquad

19. If $\mathrm{m} \angle 1=53^{\circ}$, and $\mathrm{m} \angle 2=114^{\circ}$, then $\mathrm{m} \angle$ $x=$ \qquad	20. State whether the figure is a polygon. If it is, identify the polygon and state whether it is convex or concave. If it is not, explain why.
21. \odot_{p} and Θ_{Q} are congruent circles that intersect at C and D. If the radius is 13 cm and $\mathrm{PQ}=12 \mathrm{~cm}$, what is the area of quadrilateral PCQD?	22. E is the midpoint of $\overline{D F}$. If $\mathrm{DE}=3 \mathrm{x}+$ 6 and $E F=51$, find the value of x.
23. In $\triangle A B C, A D=8$ and $D B=24$. Find $A C$. (A) D $8 \sqrt{3}$ (B) $4 \sqrt{2}$ (C) $16 \sqrt{3}$ (D) 16 (E) 4	24. Points E, F, and G are (A) collinear (B) noncoplanar (C) noncollinear (D) coplanar

Date \qquad
(Key 5 - Answer ID \# 0939992)

1. The perimeter of a triangle is 135 cm and the lengths of its sides are in the ratio $10: 7: 10$. Find the length of each side.	2. Does AAA guarantee that two triangles are congruent? Why or why not?	
3. In circle 0 , chord $\overline{A B}$ is parallel to diameter $\overline{C D}$. If $m \overparen{A B}=4 \mathrm{~m} \overparen{A C}$, find (a) $\mathrm{m} \overparen{A C}$ (b) $\mathrm{m} \angle A O B$ (c) $\mathrm{m} \angle \mathrm{AEB}$ (d) $\mathrm{m} \angle \mathrm{AFC}$ (e) $\mathrm{m} \angle \mathrm{BDE}$. ANSWERS:	4. If $\mathrm{m} \angle \mathrm{A}=38^{\circ}$, find $\mathrm{m} \angle \mathrm{ABC}$.	
5. Given: $\overline{B C}{ }_{\\|} \overline{D E}$ Prove: $\overline{A B} \times \overline{D E} \cong \overline{A D} \times \overline{B C}$	6. When two secants are drawn from an external point to the same circle, the measurement of one particular arc will enable you to find the measure of the angle formed by the secants. False (B) True	

\qquad

Date \qquad
(Key 5 - Answer ID \# 0939992)
7. Suppose M is between L and N . LM $=5 \mathrm{x}-$ 19, $M N=2 x-9, L N=11 x-60$. Find the value of the variable and the lengths of $\overline{L M}, \overline{M N}$, and $\overline{L N}$.
9. State whether the polygon is best described as equiangular, equilateral, regular, or none of these.

10. Suppose there are n non-collinear points in the interior of $\angle X Y Z$. How many pairs of adjacent angles are in \angle XYZ?
(A) $n-1$
(B) $n+1$
(C) $2 n$
(D) $n(n+1)$
(E) n
8. The coordinates of a parallelogram are $(1,-1),(3,2),(9,0)$, and (x, y) and x $>$ 9. What is the value of $x+y$?
11. State whether the figure is a polygon. If it is, identify the polygon and state whether it is convex or concave. If it is not, explain why.

13. Draw a circle O with radius 12 . Then draw radii $\overline{O A}$ and $\overline{O B}$ to form an angle of 60 degrees. What is the length of $\overline{A B}$?

Name
\qquad

15. $A B C D$ is a rectangle with diagonals intersecting at E. Given that $A B=12$ and $B C=6$, find the length of $\overline{D E}$.	16. A rectangle has a diagonal of 10 and length of $2 \sqrt{6}$. Find the area of the rectangle.	
17. Given: $\overline{A E}$ bisects $\angle \mathrm{BAC} . \overline{A B} \cong \overline{A C}$ Prove: $\angle 1_{1}^{1} \cong \angle^{2}$	18. If $\overline{A B} \\|_{\overline{D E}}, \mathrm{~m} \angle 1=140^{\circ}$, and $\mathrm{m} \angle 2=79^{\circ}$ then $\mathrm{m} \angle 3=$ \qquad	
19. Name the properties of a rhombus.	20. Given: $\angle \mathrm{EDB}>\angle \mathrm{ABD}, \overline{C B} \cong \overline{C D}$ Prove: $\angle \mathrm{CDB}>\angle \mathrm{ABC}$	

Name \qquad

Date \qquad
(Key 5 - Answer ID \# 0939992)

21. How many degrees are in each acute angle of an isosceles right triangle?	22. Seven $45^{\circ}-45^{\circ}-90^{\circ}$ triangles share one vertex. The hypotenuse of one triangle is the leg of the neighboring triangle. If the length of the hypotenuse of the first (also the smallest) triangle is r, express the length of the hypotenuse of the seventh triangle in terms of r.			
23. ${ }_{k}\left\\|^{1}\right\\|^{\mathrm{n}}$ and $\overline{A B} \\|^{\overline{C D}}$. If $\mathrm{m} \angle 1=79^{\circ}, \mathrm{m} \angle^{2}$ $=64^{\circ}$, and $\mathrm{m} \angle 3=33^{\circ}$, then $\mathrm{m} \angle \mathrm{x}+\mathrm{m} \angle \mathrm{y}$ $+m \angle z=$ \qquad .	24. Medians $\overline{A D}, \overline{B E}$, and $\overline{C F}$ of $\triangle A B C$ meet at $\mathrm{G}, \overline{E F}$ intersects $\overline{A D}$ at H , and $\overline{A D}$ $=21$. Find $\overline{G H}$.			
25. In $\triangle A B C$, the measure of angle B is twice the measure of angle A. Angle C measures three times the measure of angle A. If $A C=38$, find $A B$. (A) $38 \sqrt{3}$ (B) $19 \sqrt{2}$ (C) 38 (D) 19 (E) $19 \sqrt{3}$	26. Is $\triangle A B C \cong \triangle D B C$? If so, name the postulate or theorem used.			

Answer Key 0173240

Key \# 1

1. In $\square \mathrm{ABCD}, \mathrm{m} \angle 1=\mathrm{m} \angle 2, \mathrm{CF}=15 \mathrm{~cm}, \mathrm{AB}=10 \mathrm{~cm}$, and $\mathrm{m} \angle \mathrm{C}=105^{\circ}$. Find the perimeter of $\square \mathrm{ABCD}$.

50 cm
2.

Given: Parallelogram $A B C D$ with $\overline{C D}$ extended to E
Prove: $\overline{A B} \times \overline{E F} \cong \overline{B F} \times \overline{D E}$

Statements

1. Parallelogram ABCD
2. $\overline{A B} \| \overline{C D E}$
3. $\angle \underline{\mathrm{ABF}^{\cong}} \cong \angle \underline{\underline{E}}$
4. $\angle \underline{\mathrm{AFB}} \cong \angle \underline{\mathrm{DEE}}$
5. $\Delta \underline{\mathrm{ABF}} \sim \Delta$ DEF
6. $\frac{\overline{A B}}{\overline{B F}} \cong \overline{\overline{E F}}$
7. $\overline{A B} \times \overline{E F} \cong \overline{B F} \times \overline{D E}$

Reasons

1. Given
2. Opposite sides of a parallelogram are parallel.
3. Parallel lines cut by a transversal form congruent alternate interior angles.
4. Vertical angles are congruent
5. $A A$
6. Similar triangles have corresponding sides in proportion.
7. The product of the means equals the product of the extremes.
8. $\overline{B P}$ and $\overline{C P}$ are angle bisectors. If $\mathrm{m} \angle \mathrm{A}=72^{\circ}$, find the measure of $\angle \mathrm{BPC}$.

9. In $\triangle A B C$, the measure of angle B is twice the measure of angle A. Angle C measures three times the measure of angle A. If $A C=22$, find $A B$.
(A) 11
(B) $22 \sqrt{3}$
(-्) 22
(D) $11 \sqrt{2}$
$\longrightarrow 11 \sqrt{3}$

Answer Key 0173240

Key \# 1
5. The diagonals of a \qquad are perpendicular bisectors of each other.
(A) trapezoid
(-B) rectangle

- rhombus
(D) parallelogram

6. In right $\triangle A B C, \overline{C D}$ is the altitude to hypotenuse $\overline{A B}$. If $A C=26$ and $A D=13$, find AB.
(A) $2 \sqrt{13}$
(B) $13 \sqrt{2}$
(-) 22

- 52
(E) 39

7. The measure of inscribed $\angle A B C=69^{\circ}$. Find $\mathrm{m} \widehat{A C}$. 138°
8. How many degrees are in each angle of an equilateral triangle? 60°
9. If the length of the hypotenuse of the right isosceles triangle is 8, find the length of the longer leg of the adjacent triangle.

$4 \sqrt{6}$
10. In $\square \mathrm{ABCD}, \angle \mathrm{B}: \angle \mathrm{C}=1: 3$. Find the measure of $\angle \mathrm{A}$.
135°

Answer Key 0173240

Key \# 1

11. The governor wants to build a new library for three cities X, Y, and Z. If the distance between each two cities is 18 kilometers, and the location of the new library will be in equidistance to all three cities, what is the distance between the new library and city X ?
$6 \sqrt{3}$
12.

Given: $\overline{B E}$ bisects $\angle \mathrm{ABC}$.
Prove: $\angle \mathrm{ACD}>\angle \mathrm{ABE}$

1. $\overline{B E}$ bisects $\angle A B C$.

Reasons

2. $\angle \underline{\mathrm{ABE}^{\cong}} \cong \angle \underline{\mathrm{EBC}}$
3. $\angle \underline{A B C}>\angle \underline{A B E}$
4. $\angle \underline{A C D}>\angle \underline{A B C}$
5. $\angle \underline{A C D}>\angle \underline{A B E}$
6. Given
7. Definition of bisect
8. A whole angle is greater than any of its parts.
9. The exterior angle of a triangle is greater than either of the interior opposite angles.
10. Transitive property of inequalities
11. State whether the polygon is best described as equiangular, equilateral, regular, or none of these.

Quadrilateral; equilateral
14.

Given: $\angle 1^{1} \cong \angle 2, \overline{B D} \cong \overline{C E}, \overline{A B} \perp \overline{B E}, \overline{E F} \perp \overline{B E}$
Prove: $\angle^{\mathrm{A}} \cong \angle \mathrm{F}$

Statements

1. $\angle 1 \cong \angle \underline{2}$
2. $\angle 1$ and $\angle \underline{A C B}$ are supplements. $\angle 2$ and \angle FDE are supplements.
3. $\angle \underline{\mathrm{ACB}} \cong \angle \underline{\mathrm{FDE}}$
4. $\overline{A B} \perp \overline{B E}, \overline{E F} \perp \overline{B E}$
5. $\angle \mathrm{B}$ and $\angle \mathrm{E}$ are right angles.
6. $\angle \underline{\mathrm{B}} \cong \angle \underline{\mathrm{E}}$
7. $\overline{B D} \cong \overline{C E}$
8. $\overline{C D} \cong \overline{C D}$
9. $\overline{B D}=\overline{C D} \cong \overline{C E}=\overline{C D}$
10. $\overline{B C} \cong \overline{E D}$
11. $\Delta \underline{A B C} \cong \Delta \underline{F E D}$

Reasons

1. Given
2. Definition of supplements
3. Supplements of congruent angles are congruent.
4. Given
5. Definition of perpendicular
6. All right angles are congruent.
7. Given
8. Reflexive
9. Subtraction
10. Substitution
11. ASA $12 \angle \underline{\underline{A}} \cong \angle \underline{F}$
12. Points X and Y are on $\overline{A B}$. If $A X>B Y$, then which statement must be true?
(A) $X Y<B Y$

- \bar{B}) $\mathcal{A} \quad B Y$
(D) $A Y+B X>A B$
(D) $A X<B X$
— AY > BX

16. Suppose that the vertex, O, of $\angle A O B$ is placed on the center point of a half-circle with coordinates from 0° to 180°. Let a and b be the coordinates where $\overrightarrow{O A}$ and $\overrightarrow{O B}$ intersect the half circle. What is the measure of $\angle A O B$?
(A) a - b
$\rightarrow|b-a|$
(-) $a+b$
(D) ab

Answer Key 0173240

Key \# 1

17. Transversal t cuts lines k and $n . m \angle 1=(148-3 x)^{\circ}$ and $m \angle 2=(5 x+12)^{\circ}$. Find the value of x that makes $k \| n$.

10
18.

Given: $\overline{A B} \cong \overline{D C}, \overline{A B} \perp \overline{A D}, \overline{D C} \perp \overline{B C}$
Prove: $\overline{A D} \cong \overline{B C}$

Statements

1. $\overline{A B} \perp \overline{A D}, \overline{D C} \perp \overline{B C}$
2. $\angle \underline{A}$ and $\angle C$ are right angles.
3. $\overline{A B} \cong \overline{D C}$
$\underline{4 \cdot \overline{B D}} \cong \overline{B D}$
4. $\Delta \underline{A B D} \cong \Delta \underline{C D B}$
5. $\overline{A D} \cong \overline{B C}$
6. HL

Reasons

1. Given
2. Definition of perpendicular
3. Given
4. Reflexive
5. CPCTC
6. At 5 o'clock the hands of a clock form an angle of \qquad . 150°
7. The length of the hypotenuse of a right isosceles triangle is $4 \sqrt{5}$. What is the perimeter of the triangle?
$4 \sqrt{10}+4 \sqrt{5}$
8. Three lines intersecting in one point are \qquad coplanar. sometimes
(B) never
($\overline{\text { - }}$
9. $\overline{A B} \|_{\|} \overline{H I}{ }_{\|} \overline{D F}, \overline{A D}_{\|} \overline{F H}, \overline{B I} \perp^{\overline{H I}}$, and $\mathrm{m} \angle \mathrm{H}=21^{\circ}$. Find $\mathrm{m} \angle \mathrm{BCA}$.

Answer Key 0903204

Key \# 2

1. Which of the following equations are proportions?
(A) 43/75 ? 68/100

8/6 ? 28/21
(-) 4/15 ? 6/21.5
(D) $1 / 6$? $18 / 3$
2. If $k \|^{n}, m \angle 1=(3 x-11)^{\circ}, m \angle 2=3 x^{\circ}$, and $m \angle 3=(x+44)^{\circ}$, find the value of x.

3. In the figure, A, B, C, D, E and F are points on a circle, $m \angle H=16^{\circ}$, and $\mathrm{m} \angle I=23^{\circ}$. Find $\mathrm{m} \angle \mathrm{BGC}-\mathrm{m} \angle \mathrm{EJF}$.

39°
4. In $\triangle A B C, \overline{A D} \perp \overline{B C}$ and $\overline{A E}$ bisects $\angle \mathrm{BAC}, \mathrm{m} \angle \mathrm{B}=62^{\circ}$, and $\mathrm{m} \angle \mathrm{C}=36^{\circ}$. Find $\mathrm{m} \angle \mathrm{DAE}$.

5. $\mathrm{m} \angle 1=\left(\mathrm{x}^{2}\right)^{\circ}$ and $\mathrm{m} \angle 2=(2 \mathrm{x}-15)^{\circ}$. Find the value of x that makes lines k and n parallel.

$x=13$
6.

Given: $\overline{B D} \cong \overline{C E}, \quad \overline{A D} \cong \overline{A E}$
Prove: $\angle \mathrm{BCD} \cong \angle \mathrm{CBE}$

1. $\overline{B D} \cong \overline{C E}, \overline{A D} \cong \overline{A E}$
2. $\overline{B D} \pm \overline{A D} \cong \overline{C E} \pm \overline{A E}$
3. $\overline{B A} \cong \overline{C A}$
4. $\angle \underline{\underline{A}} \cong \angle \underline{\underline{A}}$
5. $\Delta \underline{A D C} \cong \Delta \underline{A E B}$
6. $\overline{B E} \cong \overline{C D}$
7. $\overline{B C} \cong \overline{B C}$
8. $\triangle \mathrm{DBC} \cong \triangle \mathrm{ECB}$
9. $\angle \mathrm{BCD} \cong \angle \mathrm{CBE}$

Reasons

1. Given
2. Addition
3. Substitution
4. Reflexive
5. SAS
6. CPCTC
7. Reflexive
8. SSS
9. СРСTC

Answer Key 0903204

Key \# 2

7. $\mathrm{k}\left\|^{1}\right\|^{\mathrm{n}}$ and $\overline{A B} \| \overline{C D}$. If $\mathrm{m} \angle 1=75^{\circ}, \mathrm{m} \angle 2=63^{\circ}$, and $\mathrm{m} \angle 3=38^{\circ}$, then $\mathrm{m} \angle \mathrm{x}+\mathrm{m} \angle \mathrm{y}+\mathrm{m} \angle \mathrm{z}$ $=$ \qquad .

8. Given: $\mathrm{m} \angle \mathrm{ABD}=(2 \mathrm{x}+9 \mathrm{y}+78)^{\circ}, \mathrm{m} \angle \mathrm{CBD}=(4 \mathrm{x}+\mathrm{y}+52)^{\circ}, \mathrm{m} \angle \mathrm{ADB}=(\mathrm{x}+8 \mathrm{y}+58)^{\circ}$ and $\mathrm{m} \angle \mathrm{CDB}=(2 \mathrm{x}+4 \mathrm{y}+63)^{\circ}$. What values must x and y have to make the quadrilateral a parallelogram?

9. In right $\triangle A B C$, altitude $\overline{C D}$ is drawn to the hypotenuse. If $A D=8, B D=18$, and $C D=$ $x+9$, find the length of the altitude.
12
10. E is the midpoint of $\overline{D F}$. If $D E=3 x+33$ and $E F=7 x+13$, then $D F=$ \qquad -. 96
11.

Given: $\overline{B D}$ bisects $\angle \mathrm{ADC} . \overline{A C}$ bisects $\angle \mathrm{BCD} . \angle \mathrm{ADC} \cong \angle \mathrm{BCD}$
Prove: $\overline{A D} \cong \overline{B C}$

Statements

Reasons

1. Given
2. $\overline{B D}$ bisects \angle ADC. $\overline{A C}$ bisects $\angle B C D$.
3. $\angle \frac{\mathrm{BDC}}{\mathrm{BCD}}=(1 / 2)-\angle \underline{\mathrm{ADC}},-\angle \underline{\mathrm{ACD}=(1 / 2)-\angle}$
4. $\angle \frac{\mathrm{ADC}}{\cong} \cong \angle \mathrm{BCD}$
5. $(1 / 2)-\angle \stackrel{A D C}{\cong}(1 / 2)-\angle-B C D$
6. $\angle \mathrm{BDC} \cong \angle \underline{\mathrm{ACD}}$
7. $\overline{D C} \cong \overline{D C}$
8. $\triangle \underline{A C D} \cong \triangle \frac{B D C}{}$
9. $\overline{A D} \cong \overline{B C}$
10. Given
11. Multiplication
12. Substitution
13. Reflexive
14. Definition of bisect
15. ASA
16. CPCTC
17.

Given: $\overline{A G}_{\|} \overline{B E}, \overline{C G}_{\|} \overline{D E}, \overline{A B} \cong \overline{C D}$
Prove: $\angle \mathrm{G} \cong \angle \mathrm{E}$

Statements

1. $\overline{A G}_{\|} \overline{B E},-\overline{C G} \|_{D E}$, $\overline{A B} \cong \overline{C D}$

Reasons

2. $\overline{B C} \cong \overline{B C}$
3. Reflexive postulate
4. $\overline{A B} \pm \overline{B C} \cong \overline{C D} \pm \overline{B C}$
5. Addition
6. $\overline{A C} \cong \overline{B D}$
7. Substitution
8. $\angle \underline{\underline{\mathrm{A}}} \cong \angle \underline{\mathrm{DBE}},-\angle \underline{\underline{\mathrm{D}} \cong \angle \underline{\mathrm{ACG}}-2}$
9. $\triangle \underline{A C G}_{\cong}^{\cong} \triangle \frac{B D E}{}$
10. ASA
11. $\angle \underline{G} \cong \angle \underline{E}$
12. СРСТС

Answer Key 0903204

Key \# 2

13. In rectangle $\mathrm{ABCD}, \mathrm{AB}=(2 \mathrm{x}+5 \mathrm{y}-117)$, $B C=(4 x+2 y-102), C D=(3 x-7 y+78)$, and $D A=(7 x+2 y-165)$. Find the perimeter of the rectangle. 66	14. $\begin{aligned} & \text { In } \triangle A B C, \overline{A B} \cong \overline{A C}, \mathrm{~m} \angle \mathrm{~A}=(\mathrm{x}+74)^{\circ} \text { and } \mathrm{m} \\ & \angle \mathrm{~B}=(\mathrm{x}+47)^{\circ} \text {. Find all three angles. } \\ & \underline{\mathrm{m}} \angle{\underline{A}=78^{\circ}}^{\circ}, \mathrm{m} \angle \underline{\mathrm{~B}=51^{\circ}}{ }^{\circ}, \mathrm{m} \angle \underline{\mathrm{C}=51^{\circ}} \end{aligned}$
15. If $\overline{A B} \cong \overline{A C}$ and $\overline{A D} \cong \overline{A E}$, how many pairs of congruent triangles are there in the figure? (A) 6 (C) 4 (D) 3	16. If $\mathrm{m} \angle 1=51^{\circ}, \mathrm{m} \angle 2=69^{\circ}$, and $\mathrm{m} \angle 3=42^{\circ}$ then $\mathrm{m} \angle \mathrm{x}+\mathrm{m} \angle \mathrm{y}-\mathrm{m} \angle \mathrm{z}=$ \qquad
17. In right $\triangle A B C, \overline{C D}$ is the altitude to hypotenuse $\overline{A B}$. Which line segment is NOT a hypotenuse? $\Leftrightarrow \overline{C D}$ (B) $\overline{B C}$ (C) $\overline{A B}$ (D) $\frac{A C}{A C}$	18. In right triangle $A B C$, the length of leg $B C$ is $6 \sqrt{3}$. If the area of the triangle is $54 \sqrt{3}$, find the measure of $\angle \mathrm{A}$. (-) $\quad 45^{\circ}$ (C) 60° (D) 90°

Answer Key 0903204

Key \# 2

19. ABCD is a rectangle with diagonals intersecting at E. Given that $\mathrm{AB}=12$ and $\mathrm{BC}=5$, find the length of $\overline{D E}$.
13/2
20. In $\square A B C D$, diagonals $\overline{A C}$ and $\overline{B D}$ intersect at E. If $m \angle A C B=(2 \mathrm{x}+1)^{\circ}, \mathrm{m} \angle \mathrm{ADB}=(4 \mathrm{x}+$
$6)^{\circ}, m \angle A E D=107^{\circ}$, find the value of x.
$\mathbf{x}=11$
21. What happens if the triangles share a side, part of a side, or part of an angle? If they share a whole side, you use the Reflexive Postulate to get it congruent to itself, and count it as a side. If they share part of a side or part of an angle, you first use Reflexive. You then need another equation so that you can either add or subtract, and then use Substitution to get the whole angle or side.
22. State whether or not each of the following triangle pairs is congruent. If so, state a reason.

Yes, AAS
23. State whether the figure is a polygon. If it is, identify the polygon and state whether it is convex or concave. If it is not, explain why.

No, because some of the segments intersect more than two other segments.
24.

Given: $\overline{A B}\left\|_{\overline{C D}}, \overline{B E}\right\|_{\overline{D F}}$
Prove: $\overline{B E} \times \overline{C F} \cong \overline{D F} \times \overline{A E}$

Statements

Reasons

1. $\overline{A B}{ }_{\|} \overline{C D}_{,}, \overline{B E}_{\|} \overline{D F}$
2. $\angle \underline{\underline{\mathrm{A}}} \cong \angle \underline{\mathrm{DCE}},-\angle \underline{\mathrm{BEA}} \cong \angle \mathrm{F}$
3. Given
4. Parallel lines cut by a
5. $\triangle \mathrm{ABE} \sim \triangle \mathrm{CDF}$
6. $\overline{B E} \quad \overline{A E}$
$\overline{\overline{D F}} \cong \overline{\overline{C F}}$
7. $\overline{B E} \underline{\mathrm{x}}^{\overline{C F}} \cong \overline{D F} \underline{\mathrm{x}} \overline{A E}$
8. AA
9. Similar triangles have corresponding sides in proportion.
10. The product of the means equals the product of the extremes.

Answer Key 0496849

Key \# 3

1. Michael had a geometry quiz today. He answered all questions correctly except for one: In $\triangle A B C, \overline{A B} \cong \overline{A C}, \mathrm{P}$ is a point inside the triangle, and $\overline{A M}$ bisects $\angle \mathrm{A}$ and meets $\overline{P C}$ at M. Prove $\overline{P C}>\overline{P B}$.
Michael showed you his steps for his proof. Please tell Michael which step was wrong?

(A) $\because \angle \mathrm{BAM} \cong \angle \mathrm{CAM}, \overline{A M} \cong \overline{A M}$
(B)
$\therefore \triangle A M B \cong \triangle A M C$ by SAS
(C)
$\therefore \overline{M B} \cong \overline{M C}$

-

In $\triangle \mathrm{BPM}, \because \overline{P M} \perp \overline{P B}$
(E) $\therefore \overline{P M}+\overline{M C}>\overline{B P}, \overline{P C}>\overline{P B}$
2.

Which of the following equations is NOT equivalent to $b=W_{\text {? }}$?
(A)

$$
\frac{x+y}{z-y}=\frac{z}{x-y}
$$

(B)
$b-1$
$-=-x+y$
x
a $c=2$
(C)
$\frac{2 y}{x+2}=\frac{p}{2}=-2$
$x+2=9 y^{2+5}$
(E)

$$
c d=\frac{4 \cdot t \cdot d i d}{b}=\frac{4 d}{d}
$$

$$
\frac{d}{b}=\frac{c}{a}=\frac{a^{2}}{b^{2}}=\left(\frac{c}{d}\right)^{2}
$$

3. In $\triangle \mathrm{XYZ}, \overline{Y X}$ is extended through X to W and $\overline{X Z} \cong \overline{X Y} . \mathrm{m} \angle \mathrm{WXZ}=(4 \mathrm{x}-18)^{\circ}$ and $\mathrm{m} \angle \mathrm{Y}=(\mathrm{x}+$ $5)^{\circ}$. Find x. $\underline{x}=14$
4. \odot_{P} and Θ_{Q} are congruent circles that intersect at C and D. What kind of quadrilateral must PCQD be?
(A) a square

- a rhombus
(C) a trapezoid
(D) a parallelogram

Answer Key 0496849

Key \# 3
5.

Given: $\overline{A B} \cong \overline{A E}, \overline{B C} \cong \overline{E C}$
Prove: $\angle^{1} \cong \angle^{2}$

Statements

1. $\overline{A B} \cong \overline{A E}, \overline{B C} \cong \overline{E C}$
2. $\overline{A C} \cong \overline{A C}$
3. $\triangle \underline{A B C} \cong \triangle \underline{A E C}$
4. $\angle \underline{\mathrm{BCA} \cong \angle \mathrm{ECA}}$
5. $\angle \frac{\mathrm{BCA}}{}$ and $\angle B C D$ are
supplements. $\angle E C A$ and $\angle E C D$
are supplements.
6. $\angle \mathrm{BCD} \cong \angle \mathrm{ECD}$
7. $\overline{C D} \cong \overline{C D}$
8. $\triangle B C D \cong \triangle E C D$
9. $\angle 1 \cong \angle \underline{2}$

Reasons

1. Given
2. Reflexive
3. SSS
4. CPCTC
5. Definition of supplements
6. Supplements of congruent angles are congruent.
7. Reflexive
8. SAS
9. СРСТС
10.

Given: $\angle \mathrm{B}>\angle \mathrm{C}$
Prove: $\widehat{A C \bar{B}}>\widehat{A B C}$

Statements

1. $\angle B>\angle C$
2.

Reasons

1. Given
2. If two inscribed angles are

$$
\overparen{A C} \geq \overparen{A B}
$$

unequal, the arcs they intercept are unequal in the same order.
3. $\overparen{B C} \cong \overparen{B C}$
4. $\overparen{A C} \pm \overparen{B C} \geq \overparen{A B} \pm \overparen{B C}$
5. $\overparen{A C B}>\overparen{A B C}$
3. Reflexive
4. Addition property of inequalities
5. Substitution
7. If $\overline{A B} \| \overline{D E}, \mathrm{~m} \angle \mathrm{ABC}=2(\mathrm{~m} \angle \mathrm{CDE})$, and $\mathrm{m} \angle \mathrm{BCD}=30^{\circ}$, then $\mathrm{m} \angle \mathrm{CDE}=$ \qquad .

70°
8. In $\square \mathrm{ABCD}, \mathrm{m} \angle 1=\mathrm{m} \angle 2, \mathrm{CF}=15 \mathrm{~cm}, \mathrm{AB}=11 \mathrm{~cm}$, and $\mathrm{m} \angle \mathrm{C}=95^{\circ}$. Find the perimeter of $\square \mathrm{ABCD}$.

Answer Key 0496849

Key \# 3
9. $\overline{A B}\|\overline{C E}\| \overline{F H}, \mathrm{~m} \angle \mathrm{~B}=70^{\circ}, \mathrm{m} \angle \mathrm{K}=21^{\circ}$, and $\overline{C J}$ bisects $\angle \mathrm{BGF}$. Find $\mathrm{m} \angle \mathrm{E}$ and $\mathrm{m} \angle \mathrm{FGK}$.

$\underline{m} \angle E=49^{\circ}, \mathrm{m} \angle \mathrm{FGK}=70^{\circ}$
10. Given: $\angle \mathrm{A} \cong \angle \mathrm{D}, \angle \mathrm{B} \cong \angle \mathrm{E}$, and $\overline{B F} \cong \overline{C E}$. If $\triangle \mathrm{ABC}$ can be proven congruent to Δ DEF, state the congruency postulate involved.

AAS
11. Why doesn't CPCTC guarantee that triangles are equilateral and/or equiangular? Because the pieces of the first are congruent to the pieces of the second; the pieces of the first do NOT have to be congruent to each other.
12. $A B C D$ is a rectangle with diagonals intersecting at E. Given that $A B=8$ and $B C=6$, find the length of $\overline{D E}$. 5
13. State whether the polygon is best described as equiangular, equilateral, regular, or none of these.

14. Which of the following statements is NOT true?

Answer Key 0496849

Key \# 3

15. Diameter $\overline{A B}$ is parallel to chord $\overline{P Q}$. If the measure of arc $B Q$ is twice of that of arc $P Q$, find the measure of angle ABP.

36°
16.

Given: $\overline{B C} \| \overline{D E}$
Prove: $\overline{A B} \times \overline{D E} \cong \overline{A D} \times \overline{B C}$

Statements

1. $\overline{B C} \|_{D E}$

Reasons

1. Given
2. Parallel lines cut by a transversal form congruent corresponding angles.
3. $A A$
4. Similar triangles have corresponding sides in proportion.
5. The product of the means equals the product of the extremes.
6. Plane X is parallel to plane Y. If plane Z intersects X in line k and Y in line n, then k is \qquad parallel to n.
B always
(B)
never
(ㄷ) sometimes
7. In circle 0 , secant $\overline{A B C}$ and chord $\overline{B D}$ intersect. If $\widehat{m D}=188^{\circ}$ and $\mathrm{mDD}=59^{\circ}$,
find $\mathrm{m} \angle \mathrm{CBD}$.
86°
8.

Given: $\quad L^{1} \cong \angle 2, \quad \angle^{3} \cong \angle 4, \overline{B D} \cong \overline{F G}$
Prove: $\angle \mathrm{C} \cong \angle \mathrm{E}$

1. $\angle 1 \cong \angle 2$
2. $\angle 1$ and $\angle E D F$ are supplements.

Reasons

1. Given
2. Definition of supplements
$\angle 2$ and \angle CFD are supplements.
3. $\angle \underline{3} \cong \angle 4$
4. Given
5. $\angle 3$ and $\angle C B F$ are supplements.
6. Definition of supplements
$\angle 4$ and $\angle E G D$ are supplements.
7. $\angle \underline{\mathrm{EDF}} \cong \angle \mathrm{CFD}, \angle \underline{\mathrm{CBF}} \cong \angle \underline{\mathrm{EGD}}$
8. Supplements of congruent angles are congruent.
9. Given
10. $\overline{B D} \cong \overline{F G}$
11. Reflexive
12. $\overline{D F} \cong \overline{D F}$
13. Addition
14. $\overline{B D} \pm \overline{D F} \cong \overline{F G} \pm \overline{D F}$
15. Substitution
16. $\overline{B F} \cong \overline{D G}$
17. ASA
18. $\angle \underline{\mathrm{C}} \cong \angle \underline{\mathrm{E}}$
19. CPCTC
20.

Given: $\overline{A B} \cong \overline{A F}, \overline{A C} \cong \overline{A E}, \mathrm{D}$ is the midpoint of $\overline{C E}$.
Prove: $\angle \mathrm{BDA} \cong \angle \mathrm{FDA}$

Statements

1. $\overline{A C} \cong \overline{A E}, \overline{A B} \cong \overline{A F}$
2. $\angle \underline{\mathrm{ACD}} \cong \angle \underline{\mathrm{AEC}}$

Reasons

1. Given
2. If two sides of a triangle are congruent, the angles
opposite those sides are congruent.
3. $\overline{A C}=\overline{A B} \cong \overline{A E}=\overline{A F}$
4. $\overline{B C} \cong \overline{F E}$
5. D is the midpoint of $\overline{C E}$.
6. $\overline{C D} \cong \overline{E D}$

7 . $\Delta \mathrm{BCD}_{\cong}^{\cong} \mathrm{FED}$
8. $\overline{B D} \cong \overline{F D}$
9. $\overline{A D} \cong \overline{A D}$
10. $\Delta \underline{A B D} \cong \triangle \underline{A F D}$

3. Subtraction
4. Substitution
5. Given
6. Definition of midpoint
7. SAS
8. CPCTC
9. Reflexive
10. SSS
11. CPCTC

Answer Key 0756486

Key \# 4

1.

Given: D is the midpoint of $\overline{C E} . \overline{A C} \cong \overline{A E}, \overline{A B} \cong \overline{A F}, \angle \mathrm{C} \cong \angle \mathrm{E}$
Prove: $\overline{B D} \cong \overline{F D}$

1. $\overline{A C} \cong \overline{A E}, \overline{A B} \cong \overline{A F}$
2. $\overline{A C}=\overline{A B} \cong \overline{A E}=\overline{A F}$
3. $\overline{B C} \cong \overline{F E}$
4. D is the midpoint of $\overline{C E}$.
5. $\overline{C D} \cong \overline{D E}$
6. $\angle \underline{C} \cong \angle \underline{E}$
7. $\triangle B C D \cong \triangle$ FED
8. $\overline{B D} \cong \overline{F D}$
9.

Given: $\overline{A B} \perp \overline{B C}, \angle^{1} \cong \angle^{2}$
Prove: $\overline{D C} \perp \overline{B C}$

1. $\overline{A B} \perp \overline{B C},-\angle \underline{1} \cong \angle \underline{2}$
2. $\overline{A B} \|_{\|} \overline{D C}$
3. Given
4. SAS
5. CPCTC

Reasons

1. Given
2. Subtraction
3. Substitution
4. Given
5. Definition of midpoint

Reasons

1. Given
2. If two lines are cut by a transversal forming congruent
alternate interior angles, the lines are parallel.
3. $\overline{D C} \perp \overline{B C}$
4. If a line is perpendicular to one of two parallel lines, it is perpendicular to the other.
5. What is the relationship between a central angle and an angle inscribed in the same arc?
The central angle will always be equal to the arc, and double the measure of the inscribed angle.
6. The governor wants to build a new library for three cities X, Y, and Z. If the distance between each two cities is 12 kilometers, and the location of the new library will be in equidistance to all three cities, what is the distance between the new library and city X ?
$4 \sqrt{3}$
7. If $a=13$ and $b=10$, find c.

269
6.

Given: $\overline{A T} \cong \overline{H S}, \overline{M T} \cong \overline{M H}$
Prove: $\Delta \mathrm{AMS}$ is isosceles.

Statements

1. $\overline{M T} \cong \overline{M H}$
2. $\angle \underline{\mathrm{MTH}} \cong \angle \underline{\mathrm{MHT}}$
3. $\angle \mathrm{MTH}$ and $\angle \mathrm{MTA}$ are supplements. \angle MHT and \angle MHS are supplements.
4. $\angle \underline{\mathrm{MTA}} \cong \angle \underline{\mathrm{MHS}}$
5. $\overline{A T} \cong \overline{H S}$
6. $\triangle \mathrm{MAT} \cong \triangle \mathrm{MSH}$
7. $\overline{A M} \cong \overline{S M}$
8.
9. SAS

Reasons

1. Given
2. If two sides of a triangle are congruent, the opposite angles are congruent.
3. Definition of supplements
4. Supplements of congruent angles are congruent.
5. Given
6. СРСТС
7. Definition of isosceles

Answer Key 0756486

Key \# 4

7. $\mathrm{m} \angle 1=135^{\circ}, \mathrm{m} \angle 2=63^{\circ}, \mathrm{m} \angle 3=77^{\circ}$. Is k $\\| n$? If so, explain how. No	8. Suppose the ratio of the side lengths of a regular hexagon ABCDEF to the corresponding side lengths of another regular hexagon $A^{\prime} B^{\prime} C^{\prime} D^{\prime} E^{\prime} F^{\prime}$ are $\sqrt{\mathbf{3}}: 1$. If the area of hexagon ABCDEF is x and the area of hexagon A'B'C'D'E'F' is x', then $\mathrm{x}: \mathrm{x}^{\prime}=$ \qquad - (A) $\sqrt{3}: 1$ - $3: 1$ C) $\sqrt{2}: 1$ (D) $2: 1$
9. $A B C D$ is a rhombus. If $A B=(8 x-104), C D=$ (10x - 130), find the value of x. $x=13$	10. Why does an equilateral triangle have to be equiangular? Draw equilateral triangle ABC. Now consider sides $\overline{A B}$ and $\overline{B C}$. They're congruent, so $\angle A$ and $\angle C$ are congruent. Now consider sides $\overline{A B}$ and $\overline{C A}$. They're also congruent, so $\angle B$ and $\angle C$ are congruent. Therefore, all three angles are congruent. We can conclude that an equilateral triangle have to be equiangular.
11. Does CРСтC prove triangles congruent? Why or why not? No. СРСТС is a result of congruent triangles, not a cause of them. It can only be used after ASA, SAS, SSS, AAS or HL.	12. Tangent $\overline{A B}$ and chord $\overline{B C}$ are drawn to circle 0 . The measure of major $\widehat{B C}$ is $(6 x+167)^{\circ}$ and the measure of minor $\overparen{B C}$ is $(4 x-87)^{\circ}$. Find $m \angle A B C$.

Answer Key 0756486

Key \# 4

13. Given: $\angle 1^{1} \cong \angle^{2}$ and $\angle^{3} \cong \mathrm{~m} \angle 4$. Prove $\overline{A D} \cong \overline{B C}$.

(1) $-\because \angle 1 \cong-\angle \underline{2} \therefore \angle B A C \cong-\angle \underline{A B D}$
(2) $\because \angle 3 \cong-\angle \underline{4},-\overline{A B}-\cong_{-} \overline{A B}$, and $\angle \underline{B A C} \cong-\angle \underline{A B D} . \triangle \triangle \underline{A B C} \cong-\triangle B A D$ by ASA
(3) $\quad \therefore \overline{A D}_{-\cong-} \overline{B C}$
14. State whether the polygon is best described as equiangular, equilateral, regular, or none of these.

Quadrilateral; equilateral
15. If $a=100$, find the value of x, y, and z.

$x=10, y=10 \sqrt{2}, z=10 \sqrt{2}$
16.

Given: $\overparen{A B} \cong \overparen{C D}$
Prove: $\angle \mathrm{ABC} \cong \angle \mathrm{DCB}$

1. $\overparen{A B} \cong \overparen{C D}$
2. $\overparen{A D} \cong \overparen{A D}$
3. $\overparen{A B} \pm \overparen{A D} \cong \overparen{C D} \pm \overparen{A D}$
4. $\overparen{B A D} \cong \overparen{C D A}$
5. $\angle \underline{\mathrm{ABC}} \cong \angle \mathrm{DCB}$

Reasons

1. Given
2. Reflexive postulate
3. Addition
4. Substitution
5. In a circle, angles inscribed in congruent arcs are congruent.
6. If $\mathrm{k} \|^{\mathrm{n}}, \mathrm{m} \angle 1=130^{\circ}$, and $\mathrm{m} \angle^{2}=102^{\circ}$, find the measure of $\angle^{\text {ACE }}$.

52°
7.

Given: B is the midpoint of $\overline{F C} \cdot \overline{A B}$ and $\overline{F D}$ bisect each other. $\overline{A D} \cong \overline{B C}$ Prove: $\angle \mathrm{ADF} \cong \angle \mathrm{F}$

Statements

1. B is the midpoint of $\overline{F C}$.
2. $\overline{B F} \cong \overline{B C}$
3. $\overline{A D} \cong \overline{B C}$
4. $\overline{A D} \cong \overline{B F}$
5.

Reasons

1. Given
2. Definition of midpoint
3. Given
4. Substitution
5. Given
$\overline{A B}$ and $\overline{F D}$ bisect each other.
6. $\overline{A E} \cong \overline{E B}, \ldots \overline{D E} \cong \overline{E F}$
7. $\triangle \underline{A E D} \cong \triangle B E F$
8. Definition of bisect
9. $\angle \underline{\mathrm{ADF}}_{\cong \angle \mathrm{F}}$
10. SSS
11. CPCTC

Answer Key 0756486

Key \# 4
19. If $\mathrm{m} \angle 1=53^{\circ}$, and $\mathrm{m} \angle 2=114^{\circ}$, then $\mathrm{m} \angle \mathrm{x}=$ \qquad .

20. State whether the figure is a polygon. If it is, identify the polygon and state whether it is convex or concave. If it is not, explain why.

No, because it has a side that is not a segment.
21. \odot_{P} and Θ_{Q} are congruent circles that intersect at C and D. If the radius is 13 cm and $P Q=12 \mathrm{~cm}$, what is the area of quadrilateral PCQD?
$12 \sqrt{133} \mathrm{~cm}^{2}$
22. E is the midpoint of $\overline{D F}$. If $D E=3 x+6$ and $E F=51$, find the value of x.
$\mathbf{x}=15$
23. In $\triangle \mathrm{ABC}, \mathrm{AD}=8$ and $\mathrm{DB}=24$. Find AC .

24. Points E, F, and G are \qquad .

Answer Key 0939992

Key \# 5

1. The perimeter of a triangle is 135 cm and the lengths of its sides are in the ratio 10 :7:10. Find the length of each side.
$50 \mathrm{~cm}, 35 \mathrm{~cm}, 50 \mathrm{~cm}$
2. Does AAA guarantee that two triangles are congruent? Why or why not?

No, because the sides could vary.
3. In circle O, chord $\overline{A B}$ is parallel to diameter $\overline{C D}$. If $m \overparen{A B}=4 \mathrm{~m} \overparen{A C}$, find (a) m $\overparen{A C}$ (b) $\mathrm{m} \angle \mathrm{AOB}$ (c) $\mathrm{m} \angle \mathrm{AEB}$ (d) $\mathrm{m} \angle \mathrm{AFC}$ (e) $\mathrm{m} \angle \mathrm{BDE}$.

ANSWERS:
a) 30° b) 120° c) 60° d $) 90^{\circ}$ e) 90°
4. If $\mathrm{m} \angle \mathrm{A}=38^{\circ}$, find $\mathrm{m} \angle \mathrm{ABC}$.

90°
5.

Given: $\overline{B C} \| \overline{D E}$
Prove : $\overline{A B} \times \overline{D E} \cong \overline{A D} \times \overline{B C}$

Statements

1. $\overline{B C} \|_{D E}^{D E}$
2. $\angle \underline{\mathrm{ABC}} \cong \angle \underline{\mathrm{D}}-\angle \underline{\mathrm{ACB}} \cong \angle \underline{\mathrm{E}}$

Reasons

1. Given
2. Parallel lines cut by a
3. $\triangle \underline{A B C} \sim \triangle \underline{A D E}$
4. $\frac{\overline{A B}}{\overline{A D}} \cong \overline{\overline{D C}}$
5. $\overline{A B} \underline{\underline{D E}} \cong \overline{A D} \underline{\underline{B C}}$
6. AA
7. Similar triangles have corresponding sides in proportion.
8. The product of the means equals the product of the extremes.
9. When two secants are drawn from an external point to the same circle, the measurement of one particular arc will enable you to find the measure of the angle formed by the secants.
False
(B) True

Answer Key 0939992

Key \# 5

7. Suppose M is between L and N. LM $=5 x-$
8. The coordinates of a parallelogram are 19, $M N=2 x-9, L N=11 x-60$. Find the value of the variable and the lengths of $\overline{L M}, \overline{M N}$, and $\overline{L N}$.
a) $x=8$
b) $L M=21, ~ M N=7, L N=28$
9. State whether the polygon is best described as equiangular, equilateral, regular, or none of these.
10. Suppose there are n non-collinear points in the interior of $\angle X Y Z$. How many pairs of adjacent angles are in $\angle X Y Z$?
(A) $n-1$

32-gon; equilateral
11. State whether the figure is a polygon. If it is, identify the polygon and state whether it is convex or concave. If it is not, explain why.

12. If $\mathrm{m} \angle 1=51^{\circ}, \mathrm{m} \angle 2=68^{\circ}$, and $\mathrm{m} \angle 3=39^{\circ}$, then $\mathrm{m} \angle \mathrm{x}+\mathrm{m} \angle \mathrm{y}-\mathrm{m} \angle \mathrm{z}=$ \qquad .

39°
14.

Secants $\overline{A B C}$ and $\overline{E D C}$ are drawn to circle 0 . If $\mathrm{m} \overparen{A B}=151^{\circ}$ and $\mathrm{m} \overparen{B D}=42^{\circ}$, find $\mathrm{m} \angle \mathrm{C}$.
54.5°

Answer Key 0939992

Key \# 5
15. $A B C D$ is a rectangle with diagonals intersecting at E. Given that $A B=12$ and $B C=6$, find the length of $\overline{D E}$.
$3 \sqrt{5}$
16. A rectangle has a diagonal of 10 and length of $2 \sqrt{6}$. Find the area of the rectangle.
$\underline{4} \sqrt{114}$ square units
17.

Given: $\overline{A E}$ bisects $\angle \mathrm{BAC} . \overline{A B} \cong \overline{A C}$
Prove: $\angle 1 \cong \angle 2$

Statements

1. $\overline{A E}$ bisects $\angle B$ BAC.
2. $\angle \underline{\mathrm{BAD}} \cong \angle \mathrm{CAD}$
3. $\overline{A B} \cong \overline{A C}$
4. $\overline{A D} \cong \overline{A D}$
5. $\triangle \underline{A B D} \cong \triangle \underline{A C D}$
6. $\angle \underline{A D B} \cong \angle \underline{A D C}$
7. $\angle \frac{\mathrm{ADB}}{}$ and $\angle 1$ are supplements. $\angle \underline{A D C}$ and $\angle 2$ are supplements
8. $\angle 1 \cong \angle \underline{2}$

Reasons

1. Given
2. Definition of bisect
3. Given
4. Reflexive
5. SAS
6. CPCTC
7. Definition of supplements
8. Supplements of congruent angles are congruent.
9. If $\overline{A B} \| \overline{D E}, \mathrm{~m} \angle 1=140^{\circ}$, and $\mathrm{m} \angle 2=79^{\circ}$, then $\mathrm{m} \angle 3=$ \qquad .

10. Name the properties of a rhombus.
1) All sides are congruent. 2) Opposite sides are parallel. 3) Diagonals bisect each other. 4) Opposite angles are congruent. 5) Diagonals are perpendicular. 6) Diagonals bisect the angles.
20.

Given: $\angle \mathrm{EDB}>\angle \mathrm{ABD}, \overline{C B} \cong \overline{C D}$
Prove: $\angle \mathrm{CDB}>\angle \mathrm{ABC}$

Statements

1. $\overline{C B} \cong \overline{C D}$
2. $\angle \mathrm{CBD} \cong \angle \mathrm{CDB}$
3. $\angle \mathrm{EDB}>\angle \underline{\mathrm{ABD}}$
4. $\angle \underline{\mathrm{EDB}}-\angle \underline{\mathrm{CDB}}>\angle \underline{\mathrm{ABD}-\angle \underline{\mathrm{CBD}}, ~}$
5. $\angle \mathrm{CDB}>\angle \underline{A B C}$

Reasons

1. Given
2. If two sides of a triangle are congruent, the angles opposite them are congruent.
3. Given
4. Subtraction property of inequalities
5. Substitution

Answer Key 0939992

Key \# 5

21. How many degrees are in each acute angle of an isosceles right triangle? 45°. The right angle takes up 90°, so there are 90° left. Since the triangle is isosceles, those angles are congruent
22. Seven $45^{\circ}-45^{\circ}-90^{\circ}$ triangles share one vertex. The hypotenuse of one triangle is the leg of the neighboring triangle. If the length of the hypotenuse of the first (also the smallest) triangle is r, express the length of the hypotenuse of the seventh triangle in terms of r.
$8 \sqrt{2} \underline{r}$
23. $\mathrm{k}\left\|^{1}\right\|^{\mathrm{n}}$ and $\overline{A B} \| \overline{C D}$. If $\mathrm{m} \angle 1=79^{\circ}, \mathrm{m} \angle 2=64^{\circ}$, and $\mathrm{m} \angle 3=33^{\circ}$, then $\mathrm{m} \angle \mathrm{x}+\mathrm{m} \angle \mathrm{y}+\mathrm{m} \angle \mathrm{z}$ = \qquad -

24. Medians $\overline{A D}, \overline{B E}$, and $\overline{C F}$ of $\triangle A B C$ meet at $G, \overline{E F}$ intersects $\overline{A D}$ at H , and $\overline{A D}=$ 21. Find $\overline{G H}$.

3.5
25. In $\triangle A B C$, the measure of angle B is twice the measure of angle A. Angle C measures three times the measure of angle A. If $A C=38$, find $A B$.
(A) $38 \sqrt{3}$
(B) $19 \sqrt{2}$
(ㄷ) 38
(D) 19
$\rightarrow 19 \sqrt{3}$
26. Is $\triangle A B C \cong \Delta D B C$? If so, name the postulate or theorem used.

No congruence can be deduced.

