12/10/2020

>

Name	Date (Key 1 - Answer ID # 0173240)
1. In \square ABCD, m/1 = m/2, CF = 15 cm, AB = 10 cm, and m/C = 105°. Find the perimeter of \square ABCD.	2. Given: Parallelogram ABCD with \overline{CD} extended to E Prove: $\overline{AB} \times \overline{EF} \cong \overline{BF} \times \overline{DE}$
3. \overline{BP} and \overline{CP} are angle bisectors. If $m \ge A$ = 72°, find the measure of $\ge BPC$.	 4. In △ABC, the measure of angle B is twice the measure of angle A. Angle C measures three times the measure of angle A. If AC = 22, find AB. ▲ 11 ▲ 22√3 C 22 ▲ 11√2 ▲ 11√3

Na	me	Date (Key 1 - Answer ID # 0173240)
5.	The diagonals of a are perpendicular bisectors of each other.	 6. In right ABC, CD is the altitude to hypotenuse AB. If AC = 26 and AD = 13, find AB. A 2√13 B 13√2 C 2 2 D 52 E 39
7.	The measure of inscribed $\angle ABC = 69^\circ$. Find m \widehat{AC} .	8. How many degrees are in each angle of an equilateral triangle?
9.	If the length of the hypotenuse of the right isosceles triangle is 8, find the length of the longer leg of the adjacent triangle.	<pre>10. In □ABCD, ∠B:∠C=1:3. Find the measure of ∠A.</pre>

Nan	ne	Date (Key 1 - Answer ID # 0173240)
11.	The governor wants to build a new library for three cities X, Y, and Z. If the distance between each two cities is 18 kilometers, and the location of the new library will be in equidistance to all three cities, what is the distance between the new library and city X?	12. Given: \overline{BE} bisects $\angle ABC$. Prove: $\angle ACD > \angle ABE$ $ACD > \angle ABE$
13.	State whether the polygon is best described as equiangular, equilateral, regular, or none of these.	14. Given: $\angle 1 \cong \angle 2$, $\overline{BD} \cong \overline{CE}$, $\overline{AB} \perp \overline{BE}$, $\overline{EF} \perp \overline{BE}$ Prove: $\angle A \cong \angle F$ $A \longrightarrow C$ F
15.	Points X and Y are on \overline{AB} . If AX > BY, then which statement must be true? (A) XY < BY (B) AY < BY (C) AY + BX > AB (D) AX < BX (E) AY > BX	16. Suppose that the vertex, 0, of $\angle AOB$ is placed on the center point of a half- circle with coordinates from 0° to 180°. Let a and b be the coordinates where \overrightarrow{OA} and \overrightarrow{OB} intersect the half circle. What is the measure of $\angle AOB$? (A) $a - b$ (B) $ b - a $ (C) $a + b$ (D) ab

Nan	ne	Date (Key 1 - Answer ID # 0173240)
17.	Transversal t cuts lines k and n. $m \ge 1 = (148 - 3x)^{\circ}$ and $m \ge 2 = (5x + 12)^{\circ}$. Find the value of x that makes k n.	18. Given: $\overline{AB} \cong \overline{DC}$, $\overline{AB} \perp \overline{AD}$, $\overline{DC} \perp \overline{BC}$ Prove: $\overline{AD} \cong \overline{BC}$
	k n 1 2 t	
19.	At 5 o'clock the hands of a clock form an angle of	20. The length of the hypotenuse of a right isosceles triangle is $4\sqrt{5}$. What is the perimeter of the triangle?
21.	Three lines intersecting in one point are coplanar. (A) sometimes (B) never (C) always	22. $\overline{AB} \parallel \overline{HI} \parallel \overline{DF}$, $\overline{AD} \parallel \overline{FH}$, $\overline{BI} \perp \overline{HI}$, and m $\angle H = 21^{\circ}$. Find m $\angle BCA$.

Name	Date (Key 2 - Answer ID # 0903204)
7. $k \parallel 1 \parallel n \text{ and } \overline{AB} \parallel \overline{CD}$. If $m \ge 1 = 75^\circ$, $m \ge 2$ = 63°, and $m \ge 3 = 38^\circ$, then $m \ge x + m \ge y + m \ge z = _$.	8. Given: $m \angle ABD = (2x + 9y + 78)^\circ$, $m \angle CBD = (4x + y + 52)^\circ$, $m \angle ADB = (x + 8y + 58)^\circ$ and $m \angle CDB = (2x + 4y + 63)^\circ$. What values must x and y have to make the quadrilateral a parallelogram?
$ \begin{array}{c} A \\ B \\ y^2 \\ C \\ D \end{array} $	
9. In right $\triangle ABC$, altitude \overline{CD} is drawn to the hypotenuse. If AD = 8, BD = 18, and CD = x + 9, find the length of the altitude.	10. E is the midpoint of \overline{DF} . If DE = 3x + 33 and EF = 7x + 13, then DF =
11. Given: \overline{BD} bisects $\angle ADC$. \overline{AC} bisects $\angle BCD$. $\angle ADC \cong \angle BCD$ Prove: $\overline{AD} \cong \overline{BC}$	12. Given: $\overline{AG} \parallel \overline{BE}$, $\overline{CG} \parallel \overline{DE}$, $\overline{AB} \cong \overline{CD}$ Prove: $\angle G \cong \angle E$

Name		edHolper O	Date (Key 2 - Answer ID # 0903204)
BC=(4 and I	ectangle ABCD, $AB=(2x + 5y - 117)$, 4x + 2y - 102), $CD=(3x - 7y + 78)$, DA=(7x + 2y - 165). Find the meter of the rectangle.	14.	In $\triangle ABC$, $\overline{AB} \cong \overline{AC}$, $m \angle A = (x + 74)^{\circ}$ and $m \angle B = (x + 47)^{\circ}$. Find all three angles.
pairs in th B B B	4	16.	If $m \ge 1 = 51^\circ$, $m \ge 2 = 69^\circ$, and $m \ge 3 = 42^\circ$, then $m \ge x + m \ge y - m \ge z = $.
17. In r: hypot	ight $_{\Delta}$ ABC, \overline{CD} is the altitude to the tenuse \overline{AB} . Which line segment is a hypotenuse? \overline{CD}	18.	In right triangle ABC, the length of leg BC is $6\sqrt{3}$. If the area of the triangle is $54\sqrt{3}$, find the measure of $\angle A$. (A) 30° (B) 45° (C) 60° (D) 90°

Nan	ne	- Contraction of the second se	Date (Key 2 - Answer ID # 0903204)
19.	ABCD is a rectangle with diagonals intersecting at E. Given that AB = 12 and BC = 5, find the length of \overline{DE} .	20.	In \square ABCD, diagonals \overline{AC} and \overline{BD} intersect at E. If m \angle ACB=(2x + 1)°, m \angle ADB=(4x + 6)°, m \angle AED=107°, find the value of x.
21.	What happens if the triangles share a side, part of a side, or part of an angle?	22.	State whether or not each of the following triangle pairs is congruent. If so, state a reason.
23.	State whether the figure is a polygon. If it is, identify the polygon and state whether it is convex or concave. If it is not, explain why.	24.	Given: $\overline{AB} \parallel \overline{CD}, \ \overline{BE} \parallel \overline{DF}$ Prove: $\overline{BE} \times \overline{CF} \cong \overline{DF} \times \overline{AE}$ A C E F B

Name	(Key 3 - Answer ID # 0496849)
1. Michael had a geometry quiz today. He answered all questions correctly except for one: In $_{\Delta}ABC$, $\overline{AB} \cong \overline{AC}$, P is a point inside the triangle, and \overline{AM} bisects $\angle A$ and meets \overline{PC} at M. Prove $\overline{PC} > \overline{PB}$. Michael showed you his steps for his proof. Please tell Michael which step was wrong?	2. Which of the following equations is NOT equivalent to $b d = b 2$ $a \frac{x+y}{z-y} = \frac{z}{x-y}$ $b \frac{d}{z-z} = \frac{x+y}{x-y}$ $b \frac{d}{z-z} = \frac{x+y}{z-y}$ $b \frac{d}{z-z} = \frac{x+y}{z-y}$ $c \frac{2y}{z+z} = \frac{y-\frac{x}{z-z}}{\frac{y-\frac{x}{z-z}}{z-z}}$ $c \frac{2y}{z+z} = \frac{y-\frac{x}{z-z}}{\frac{y-\frac{x}{z-z}}{z-z}}$ $c \frac{2y}{z-y} = \frac{y-\frac{x}{z-y}}{\frac{y-\frac{x}{z-z}}{z-z}}$ $c \frac{2y}{z-y} = \frac{y-\frac{x}{z-y}}{\frac{y-\frac{x}{z-z}}{z-z}}$ $c \frac{2y}{z-y} = \frac{y-\frac{x}{z-y}}{\frac{y-\frac{x}{z-z}}{z-z}}$ $c \frac{2y}{z-\frac{y-\frac{x}{z-y}}{z-\frac{x-y}{z-\frac{x}{z-$
3. In ΔXYZ , \overline{YX} is extended through X to W and $\overline{XZ} \cong \overline{XY}$. m $\angle WXZ = (4x - 18)^{\circ}$ and m $\angle Y = (x + 5)^{\circ}$. Find x.	 4. O P and O Q are congruent circles that intersect at C and D. What kind of quadrilateral must PCQD be? A a square B a rhombus C a trapezoid D a parallelogram

Name	(Key 3 - Answer ID # 0496849)
9. $\overline{AB} \parallel \overline{CE} \parallel \overline{FH}$, $m \ge B = 70^\circ$, $m \ge K = 21^\circ$, and \overline{CJ} bisects $\ge BGF$. Find $m \ge E$ and $m \ge FGK$.	10. Given: $\angle A \cong \angle D$, $\angle B \cong \angle E$, and $\overline{BF} \cong \overline{CE}$. If $\triangle ABC$ can be proven congruent to $\triangle DEF$, state the congruency postulate involved.
$ \begin{array}{cccc} $	
11. Why doesn't CPCTC guarantee that triangles are equilateral and/or equiangular?	12. ABCD is a rectangle with diagonals intersecting at E. Given that AB = 8 and BC = 6, find the length of \overline{DE} .
13. State whether the polygon is best described as equiangular, equilateral, regular, or none of these.	14. Which of the following statements is NOT true? k k k k k k k k

Name	Date
15. Diameter \overline{AB} is parallel to chord \overline{PQ} . If the measure of arc BQ is twice of that of arc PQ, find the measure of angle ABP.	16. Given: $\overline{BC} \parallel \overline{DE}$ Prove: $\overline{AB} \times \overline{DE} \cong \overline{AD} \times \overline{BC}$
A B P Q	
17. Plane X is parallel to plane Y. If plane Z intersects X in line k and Y in line n, then k is parallel to n. A always B never C sometimes	18. In circle O, secant \overline{ABC} and chord \overline{BD} intersect. If \widehat{AD} = 188° and \widehat{BD} = 59°, find m_CBD.
19. Given: $\angle 1 \cong \angle 2$, $\angle 3 \cong \angle 4$, $\overline{BD} \cong \overline{FG}$ Prove: $\angle C \cong \angle E$	20. Given: $\overline{AB} \cong \overline{AF}$, $\overline{AC} \cong \overline{AE}$, D is the midpoint of \overline{CE} . Prove: $\angle BDA \cong \angle FDA$
$\begin{array}{c} C \\ 3 \\ \hline 3 \\ \hline 1 \\ \hline 2 \\ \hline 2 \\ \hline 4 \\ \hline F \\ \hline G \\ H \end{array}$	

Name	Date (Key 4 - Answer ID # 0756486)
1. Given: D is the midpoint of \overline{CE} . $\overline{AC} \cong \overline{AE}$, $\overline{AB} \cong \overline{AF}$, $\angle C \cong \angle E$ Prove: $\overline{BD} \cong \overline{FD}$	2. Given: $\overline{AB} \perp \overline{BC}$, $\angle^1 \cong \angle^2$ Prove: $\overline{DC} \perp \overline{BC}$
3. What is the relationship between a central angle and an angle inscribed in the same arc?	4. The governor wants to build a new library for three cities X, Y, and Z. If the distance between each two cities is 12 kilometers, and the location of the new library will be in equidistance to all three cities, what is the distance between the new library and city X?
5. If a = 13 and b = 10, find c.	6. Given: $\overline{AT} \cong \overline{HS}$, $\overline{MT} \cong \overline{MH}$ Prove: $\triangle AMS$ is isosceles. M $A T H S$

Name	(Key 4 - Answer ID # 0756486)
7. m∠1 = 135°, m∠2 = 63°, m∠3 = 77°. Is k n? If so, explain how.	8. Suppose the ratio of the side lengths of a regular hexagon ABCDEF to the corresponding side lengths of another regular hexagon A'B'C'D'E'F' are √3:1. If the area of hexagon ABCDEF is x and the area of hexagon A'B'C'D'E'F' is x', then x:x' = A √3:1 B 3:1 C √2:1 D 2:1
9. ABCD is a rhombus. If AB=(8x - 104), CD= (10x - 130), find the value of x.	10. Why does an equilateral triangle have to be equiangular?
11. Does CPCTC prove triangles congruent? Why or why not?	12. Tangent \overline{AB} and chord \overline{BC} are drawn to circle O. The measure of major \widehat{BC} is (6x + 167)° and the measure of minor \widehat{BC} is (4x - 87)°. Find m∠ABC.

Name	Date (Key 4 - Answer ID # 0756486)
19. If $m \ge 1 = 53^\circ$, and $m \ge 2 = 114^\circ$, then $m \ge x = _$.	20. State whether the figure is a polygon. If it is, identify the polygon and state whether it is convex or concave. If it is not, explain why.
21. ⊙P and ⊙Q are congruent circles that intersect at C and D. If the radius is 13 cm and PQ = 12 cm, what is the area of quadrilateral PCQD?	22. E is the midpoint of \overline{DF} . If DE = 3x + 6 and EF = 51, find the value of x.
23. In $\triangle ABC$, $AD = 8$ and $DB = 24$. Find AC. A D B A $8\sqrt{3}$ B $4\sqrt{2}$ C $16\sqrt{3}$ D 16 E 4	24. Points E, F, and G are

Name	(Key 5 - Answer ID # 0939992)
1. The perimeter of a triangle is 135 cm and the lengths of its sides are in the ratio 10 :7:10. Find the length of each side.	2. Does AAA guarantee that two triangles are congruent? Why or why not?
3. In circle 0, chord \overline{AB} is parallel to diameter \overline{CD} . If $\widehat{AB} = 4\widehat{AC}$, find (a) \widehat{AC} (b) $\mathbb{M} \land AOB$ (c) $\mathbb{M} \land AEB$ (d) $\mathbb{M} \land AFC$ (e) $\mathbb{M} \land BDE$.	4. If $m \ge A = 38^\circ$, find $m \ge ABC$.
5. Given: $\overrightarrow{BC} \parallel \overrightarrow{DE}$ Prove: $\overrightarrow{AB} \times \overrightarrow{DE} \cong \overrightarrow{AD} \times \overrightarrow{BC}$ $\overrightarrow{D} = \overrightarrow{E}$	 6. When two secants are drawn from an external point to the same circle, the measurement of one particular arc will enable you to find the measure of the angle formed by the secants. A False B True

Nar	ne	- Contraction	Date
7.	Suppose M is between L and N. LM = $5x - 19$, MN = $2x - 9$, LN = $11x - 60$. Find the value of the variable and the lengths of \overline{LM} , \overline{MN} , and \overline{LN} .		The coordinates of a parallelogram are $(1, -1)$, $(3, 2)$, $(9, 0)$, and (x, y) and $x > 9$. What is the value of $x + y$?
9.	State whether the polygon is best described as equiangular, equilateral, regular, or none of these.	10.	Suppose there are n non-collinear points in the interior of $\angle XYZ$. How many pairs of adjacent angles are in $\angle XYZ$? (A) n - 1 (B) n + 1 (C) 2n (D) n(n + 1) (E) n
11.	If it is, identify the polygon and state whether it is convex or concave. If it is not, explain why.	12.	If $m \ge 1 = 51^\circ$, $m \ge 2 = 68^\circ$, and $m \ge 3 = 39^\circ$, then $m \ge x + m \ge y - m \ge z = $.
13.	Draw a circle O with radius 12. Then draw radii \overline{OA} and \overline{OB} to form an angle of 60 degrees. What is the length of \overline{AB} ?	14.	Secants \overline{ABC} and \overline{EDC} are drawn to circle 0. If $m \widehat{AE}$ = 151° and $m \widehat{BD}$ = 42°, find $m \angle C$.

Name _		Contraction of the second seco	Date
	w many degrees are in each acute angle an isosceles right triangle?	22.	Seven 45°-45°-90° triangles share one vertex. The hypotenuse of one triangle is the leg of the neighboring triangle. If the length of the hypotenuse of the first (also the smallest) triangle is r, express the length of the hypotenuse of the seventh triangle in terms of r.
=	$ \lim_{n \to \infty} \frac{\overline{AB}}{\overline{CD}} \text{If } m \ge 1 = 79^\circ, m \ge 2 \\ 64^\circ, \text{ and } m \ge 3 = 33^\circ, \text{ then } m \ge x + m \ge y \\ m \ge z = \underline{\qquad}. $	24.	Medians \overline{AD} , \overline{BE} , and \overline{CF} of ${}_{\Delta}ABC$ meet at G, \overline{EF} intersects \overline{AD} at H, and \overline{AD} = 21. Find \overline{GH} .
	$ \begin{array}{c} $		
	ABC, the measure of angle B is ice the measure of angle A. Angle C asures three times the measure of gle A. If AC = 38, find AB. 38√3 19√2 38 19 19 19 19√3	26.	Is $\triangle ABC \cong \triangle DBC$? If so, name the postulate or theorem used.

		Answer Key 0173240 <i>Key</i> # 1	
5.	The diagonals of a trapezoid rectangle rhombus parallelogra	are perpendicular bisectors of each oth	ner.
6.	In right ▲ABC, CD AB. ▲ 2√13 B 13√2 C 2 2 52 E 39	is the altitude to hypotenuse \overline{AB} . If AC = 2	6 and AD = 13, find
7.	The measure of insc:	ribed \angle ABC = 69°. Find m \widehat{AC} .	
8.	How many degrees are	e in each angle of an equilateral triangle?	
9.		e hypotenuse of the right isosceles triangle i f the adjacent triangle.	is 8, find the length
10	. In □ ABCD, ∠B:∠C= <u>135</u> °	1:3. Find the measure of $\angle A$.	

<u>Statements</u>	Reasons	
$\frac{1}{1. \sqrt{1} \approx \sqrt{2}}$	1. Given	
2. <u>/1 and /ACB are supplements</u> .	2. Definition of supplements	
<u>/2 and /FDE are supplements.</u>		
$3. \angle ACB \cong \angle FDE$	<u>3. Supplements of congruent</u> <u>angles are congruent.</u>	
$\underline{4.} \ \overline{AB} \ \overline{BE}, \ \overline{EF} \ \overline{BE}$	4. <u>Given</u>	
<u>5. \angle B and \angle E are right angles.</u>	5. Definition of perpendicular	
<u>6.</u> ∠ ^B ≅∠ ^E	<u>6.All right angles are</u> <u>congruent.</u>	
$\underline{\underline{7.}} \overline{BD} \cong \overline{CE}$	7. <u>Given</u>	
$\underline{8.} \ \overline{CD} \cong \overline{CD}$	8. Reflexive	
$\underline{9.} \ \overline{BD} \underline{-} \overline{CD} \cong \overline{CE} \underline{-} \overline{CD}$	9. Subtraction	
<u>10.</u> $\overline{BC} \cong \overline{ED}$	10. Substitution	
11. $\triangle ABC \cong \triangle FED$	<u>11. ASA 12</u> $\angle A \cong \angle F$	
<pre>15. Points X and Y are on AB. If AX > BY, then which statement must be true?</pre>		
16. Suppose that the vertex, O, of \angle AOB is placed on the center point of a half-circle		
with coordinates from 0° to 180°. Let a and b be the coordinates where \overrightarrow{OA} and \overrightarrow{OB} intersect the half circle. What is the measure of $\angle AOB$? (A) a - b		
<pre> b - a C a + b D ab </pre>		

12/10/2020

	ey 0903204 v # 2
<pre>13. In rectangle ABCD, AB=(2x + 5y - 117), BC=(4x + 2y - 102), CD=(3x - 7y + 78), and DA=(7x + 2y - 165). Find the perimeter of the rectangle. <u>66</u></pre>	14. In $\triangle ABC$, $\overline{AB} \cong \overline{AC}$, $m \angle A = (x + 74)^{\circ}$ and $m \angle B = (x + 47)^{\circ}$. Find all three angles. $\underline{m} \angle A = 78^{\circ}, \underline{m} \angle B = 51^{\circ}, \underline{m} \angle C = 51^{\circ}$
15. If $\overline{AB} \cong \overline{AC}$ and $\overline{AD} \cong \overline{AE}$, how many pairs of congruent triangles are there in the figure?	16. If $m \ge 1 = 51^\circ$, $m \ge 2 = 69^\circ$, and $m \ge 3 = 42^\circ$, then $m \ge x + m \ge y - m \ge z = _$.
	$\frac{1}{2}$ $\frac{x}{y}$ $\frac{1}{3}$ $\frac{42}{3}$
17. In right ${}_{\Delta}ABC$, \overline{CD} is the altitude to hypotenuse \overline{AB} . Which line segment is NOT a hypotenuse? \overline{CD} \overline{CD} \overline{B} \overline{BC} \overline{CC} \overline{AB} \overline{AC}	 18. In right triangle ABC, the length of leg BC is 6√3. If the area of the triangle is 54√3, find the measure of ∠A. 30° ■ 45° C 60° D 90°

https://teacherworksheets.edhelper.com/cgi-bin/geom2.cgi

12/10/2020

3. ABE~ACDF

 $\underline{\mathbf{5.}} \ \overline{BE} \underline{\times} \overline{CF} \cong \overline{DF} \underline{\times} \overline{AE}$

 $\frac{\mathbf{4.}}{\overline{DF}} \underset{\cong}{\overline{DF}} = \frac{\overline{AE}}{\overline{CF}}$

edHelper.com

transversal form congruent corresponding angles.

- <u>**3.**</u> AA
- 4. Similar triangles have corresponding sides in proportion.
- 5. The product of the means equals the product of the extremes.

F

Answer Key 0496849
Key # 31. Michael had a geometry quiz today. He answered all questions correctly except for one:
In
$$_{\Delta}AUC$$
, $\overline{AB} \cong \overline{AC}$, F is a point inside the triangle, and \overline{AM} bisects $\angle A$ and meets
 \overline{PC} at N. prove $\overline{PC} > \overline{PB}$.
Michael showed you his steps for his proof. Please tell Michael which step was wrong?**A** Description**B** C
C $\angle \Delta AME \cong \Delta AMC$ by SAS
 $\bigcirc \therefore \Delta AME \cong \Delta AMC$ by SAS
 $\bigcirc \therefore \Delta AME \cong \Delta AMC$ by SAS
 $\bigcirc \therefore \overline{MB} \cong \overline{MC}$
In $_{\Delta}BPM, \because \overline{PM} \perp \overline{PB}$
 $\bigcirc \therefore \overline{FM} + \overline{MC} > \overline{BP}, \overline{PC} > \overline{PB}$ 2.**W**
which of the following equations is NOT equivalent to $\frac{1}{24} = \frac{1}{24}$
 $\frac{1}{24} = \frac{1}{24}$ 3. In $_{A}XVZ, \overline{YX}$ is extended through X to W and $\overline{XZ} \equiv \overline{XY}$. m $\angle XXZ= (4x - 18)^{\circ}$ and m $\angle Y=(x + 5)^{\circ}$. Find x.
 $x = 14$ 4. Op and Og are congruent circles that intersect at C and D. What kind of
quadrifiarral must SCOD be?
 \bigcirc a trappezoid
 \bigcirc a parallelogram

2.

2. If two inscribed angles are

12/10/2020

20.

Given: $\overline{AB} \cong \overline{AF}$, $\overline{AC} \cong \overline{AE}$, D is the midpoint of \overline{CE} . Prove: $\angle BDA \cong \angle FDA$

<u>**1.** Given</u>

2. If two sides of a triangle are congruent, the angles

our reportsonn	
	<u>opposite those sides are</u> <u>congruent.</u>
$\underline{3.} \ \overline{AC} \underline{=} \overline{AB} \cong \overline{AE} \underline{=} \overline{AF}$	3. Subtraction
$\underline{4.} \ \overline{BC} \cong \overline{FE}$	4. Substitution
5. D is the midpoint of \overline{CE} .	5. <u>Given</u>
$\underline{6.} \ \overline{CD} \cong \overline{ED}$	6. Definition of midpoint
7. $ _ BCD \cong _ _ FED $	<u>7. SAS</u>
$\underline{8.} \ \overline{BD} \cong \overline{FD}$	<u>8. CPCTC</u>
9. $\overline{AD} \cong \overline{AD}$	<u>9. Reflexive</u>
10. $ ABD \cong AFD $	<u>10.</u> <u>SSS</u>
<u>11.</u> $\angle BDA \cong \angle FDA$	<u>11</u> . <u>CPCTC</u>

Reasons

1. Given

2. If two lines are cut by a transversal forming congruent

alternate interior angles, the lines are parallel. $\underline{\mathbf{3.}} \overline{DC} + \overline{BC}$ 3. If a line is perpendicular to one of two parallel lines, it is perpendicular to the other. 3. What is the relationship between a central angle and an angle inscribed in the same arc? The central angle will always be equal to the arc, and double the measure of the inscribed angle. 4. The governor wants to build a new library for three cities X, Y, and Z. If the distance between each two cities is 12 kilometers, and the location of the new library will be in equidistance to all three cities, what is the distance between the new library and city X? 4√3 5. If a = 13 and b = 10, find c. √269 6. Given: $\overline{AT} \simeq \overline{HS}$, $\overline{MT} \simeq \overline{MH}$ Prove: ▲AMS is isosceles. н Statements <u>Reasons</u> <u>**1.** Given</u> $\frac{1}{MT} \simeq \overline{MH}$ 2. If two sides of a triangle <u>2.∠MTH ~∠MHT</u> are congruent, the opposite angles are congruent. 3. / MTH and / MTA are 3. Definition of supplements supplements. / MHT and / MHS are supplements. 4. Supplements of congruent $\underline{\mathbf{4.}} \angle \underline{\mathrm{MTA}} \cong \angle \underline{\mathrm{MHS}}$ angles are congruent. 5. Given $5.\overline{AT} \simeq \overline{HS}$ **6.** $\triangle MAT \cong \triangle MSH$ 6. SAS $\underline{7.} \overline{AM} \cong \overline{SM}$ **7.** CPCTC

edHelper.com

https://teacherworksheets.edhelper.com/cgi-bin/geom2.cgi

8.

12/10/2020

8. Definition of isosceles

<u>⊾AMS is isosceles.</u>

Answer K	ey 0756486
Кеу	? # 4
7. $m \ge 1 = 135^\circ$, $m \ge 2 = 63^\circ$, $m \ge 3 = 77^\circ$. Is k $\ n$? If so, explain how. 1 k n k N_0	8. Suppose the ratio of the side lengths of a regular hexagon ABCDEF to the corresponding side lengths of another regular hexagon A'B'C'D'E'F' are √3:1. If the area of hexagon ABCDEF is x and the area of hexagon A'B'C'D'E'F' is x', then x:x' = ▲ √3:1 ● 3:1 ● 2:1
<pre>9. ABCD is a rhombus. If AB=(8x - 104), CD= (10x - 130), find the value of x. x = 13</pre>	10. Why does an equilateral triangle have to be equiangular? Draw equilateral triangle ABC. Now consider sides AB and BC. They're congruent, so A and C are congruent. Now consider sides AB and CA. They're also congruent, so B and C are congruent. Therefore, all three angles are congruent. We can conclude that an equilateral triangle have to be equiangular.
11. Does CPCTC prove triangles congruent? Why or why not? <u>No. CPCTC is a result of congruent</u> <u>triangles, not a cause of them. It can</u> <u>only be used after ASA, SAS, SSS, AAS or</u> <u>HL.</u>	12. Tangent \overline{AB} and chord \overline{BC} are drawn to circle O. The measure of major \widehat{BC} is $(6x + 167)^{\circ}$ and the measure of minor \widehat{BC} is $(4x - 87)^{\circ}$. Find m_ABC.

https://teacherworksheets.edhelper.com/cgi-bin/geom2.cgi

\overline{AB} and \overline{FD} bisect each other.	
$\underline{6.} \ \overline{AE} \cong \overline{EB}, \ \overline{DE} \cong \overline{EF}$	<u>6</u>
$\underline{7.} \land \underline{\text{AED}}_{\cong} \land \underline{\text{BEF}}$	7
$\underline{8.} \angle \underline{\mathrm{ADF}} \cong \angle \underline{\mathrm{F}}$	<u>8</u>

<u>Definition of bisect</u>
 <u>SSS</u>

1.000

8. <u>CPCTC</u>

	3. $\triangle ABC \sim \triangle ADE$	<pre>transversal form congruent corresponding angles. 3. AA</pre>
	$ \begin{array}{cccc} \underline{4.} & \overline{\underline{AB}} & \overline{\underline{BC}} \\ \overline{\underline{AD}} & \cong & \overline{\underline{DE}} \\ \underline{5.} & \overline{\underline{AB}} \times \overline{\underline{DE}} & \cong & \overline{\underline{AD}} \times \overline{\underline{BC}} \end{array} $	 4. Similar triangles have corresponding sides in proportion. 5. The product of the means equals the product of the extremes.
6.	<pre>When two secants are drawn from an external po of one particular arc will enable you to find secants. False True</pre>	

	Answer Key 0939992 <i>Key</i> # 5		
	= 11x - 60. Find the e and the lengths of	8. The coordinates of a (1, -1), (3, 2), (9, > 9. What is the val <u>14</u>	, 0), and (x, y) and x
9. State whether the podescribed as equiang regular, or none of 9. State whether the podescribed as equiang regular, or none of 9. State whether the podescribed as equiang regular, or none of 9. State whether the podescribed as equiang regular, or none of 9. State whether the podescribed as equiang regular, or none of 9. State whether the podescribed as equiang regular, or none of 9. State whether the podescribed as equiang regular, or none of 9. State whether the podescribed as equiang regular, or none of 9. State whether the podescribed as equiang regular, or none of 9. State whether the podescribed as equiang regular, or none of 9. State whether the podescribed as equinate podescribed as equinat	ular, equilateral,		<pre>% non-collinear points</pre>
whether it is conve is not, explain why	the polygon and state x or concave. If it	12. If $m \ge 1 = 51^\circ$, $m \ge 2$, then $m \ge x + m \ge y$	2 = 68°, and m∠3 = 39° - m∠z =
	h radius 12. Then \overline{OB} to form an angle is the length of \overline{AB}	14. Secants \overline{ABC} and \overline{ABC} ircle 0. If $m \widehat{AE}$, find $m \ge C$.	\overline{EDC} are drawn to = 151° and m \widehat{BD} = 42°

https://teacherworksheets.edhelper.com/cgi-bin/geom2.cgi

	sides are parallel. 3) Diagonals bisect each 5) Diagonals are perpendicular. 6) Diagonals
20.	
Given: \angle EDB > \angle ABD, $\overline{CB} \cong \overline{CD}$	
Prove: ∠CDB > ∠ABC	
Statements	Reasons
$\frac{1}{\overline{CB}} \cong \overline{CD}$	<u>1. Given</u>
2.∠ <u>CBD</u> ≅∠ <u>CDB</u>	2. If two sides of a triangle are congruent, the angles opposite them are congruent.
<u>3.</u> <u>ZEDB > ZABD</u>	3. Given
4.∠EDB-∠CDB > ∠ABD-∠CBD	<u>4. Subtraction property of</u> <u>inequalities</u>
$5. \angle CDB > \angle ABC$	5. Substitution

12/10/2020

